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Abstract

A new synchronization mechanism created under the dataflow model of computation was

introduced during the late 1970s and called I-Structure. I-Structure exhibited the following

important features: (1) it is a dataflow style synchronization, i.e., synchronization only

occurs between an I-Structure producer and consumer operations that are accessing the same

memory location; (2) it is fine-grain i.e., it synchronizes at a finer memory granularity than

only at the whole data structure level (for instance, it would synchronize at each individual

array element instead of barrier synchronization which synchronizes at the data structure

level.); (3) it is a lenient (non-strict) synchronization - i.e., an I-Structure load can be issued

(non-blocking) even before the corresponding I-Structure store is issued/completed.

This paper reports a study of I-Structures in the context of modern many-core chip

architectures. The major points examined include:

• The creation of an I-Structure style design that exploits a lenient synchronization

model using a modern many-core architecture - the IBM Cyclops-64 architecture.

• The implementation and integration of our design in the DEEP emulation system

that can simulate the entire Cyclops-64 chip at gate level. This allows us to assess the

feasibility of its hardware design and implementation.

• The demonstration of the advantages of I-Structure style synchronization - especially

its lenient synchronization feature on the Cyclops-64 architecture through an experi-

mental case study using wavefront computation. A quantitative comparison to tradi-

tional control-flow based synchronization, such as signal-wait, is reported.

1 Introduction

During the 1970s and 1980s, a novel computational model was introduced by Dennis [1] named

Dataflow. Under this model, computation flows according to the availability of data, which

means that several operations can be run in parallel if the dependent data is available to them

(and there are free resources on which to run them). Under the umbrella of Dataflow, several

interesting structures and methods were proposed, like the actors activity template structure for

the Moonson Machine [2], static dataflow schemas [3] and the MIT tagged dataflow model [4].

Among these proposed methods, the I-Structure is a very interesting addition. The I-Structure

was designed as a lenient fine-grain memory centric (dataflow style) synchronization method

in which the requesting operations will wait on the memory construct to be initialized. This

behavior allows consumer operations (i.e. loads) to be issued before a producer operation (i.e.

store) is issued or completed. The consumer operations will have to wait until the producer

operation completes. However, the waiting happens on the I-Structure construct and frees

the issuer (i.e. the processor) to do other useful work. This non-blocking issuing behavior is

what we call the leniency property of I-structures. Another of the I-structure’s properties is

that it allows a true data centric style synchronization since it permits the synchronization on

an element level (i.e. the I-Structure) instead of depending on certain control flow constructs

such as barriers and signal-wait. Finally, it allows the synchronization to occur on finer gran-

ularity levels than its control flow based counterparts. Nevertheless, it puts the restriction of
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“single assignment on any given location. Due to the overwhelming trend of frequency scaling

and uni-processor performance during the 1990s, Dataflow research was gently nudged out of

mainstream computing. Due to the emergence of multi and many core designs that have per-

meated the computer market in the last decade, research on Dataflow models and Dataflow

style synchronization have seen a renascence.

Although many synchronization methods exist today, most of them are defined under the

control flow style of computation (i.e. they are processor centric). Most of these methods

are called coarse-grain since they allow synchronization of structures at a very high level. This

incurs high overhead which can be manageable on a small number of cores, but quickly becomes

a critical performance killer on a large number of cores. All these synchronization constructs

are critical for applications which exhibit data races, i.e., a condition that occurs when two

or more memory operations concurrently try to access a single memory element and at least

one of them is a write. Data races, if not taken care of, can produce erroneous or unexpected

results in a given application. Unfortunately, many of the real applications on High Performance

Computing (HPC) exhibit this phenomenon due to the need to use previous computed values

on its data space. Some of the most famous applications are stencil like calculations such as

the Finite Difference Time Domain (FDTD) and wavefront communication type algorithms like

Sweep3D. Some of these problems can be parallelized by program re-structuring or the insertion

of coarse-grain synchronization.

One well known synchronization construct is Signal-Wait. Under this model, the producer

sends a signal to the consumer after its write has been completed. Such behavior guarantees

the producer operation to be completed before the consumer read arrives. However, this also

implies that the consumer will have to block and wait for the signal to arrive. Although the way

that the wait is implemented (busy-wait versus sleep-and-wakeup approaches) will have a huge

impact on its performance, it still incurs an unnecessary substantial overhead for the consumer.

Furthermore, this has a negative effect on the processor and tool-chain ability to schedule and

reorder instructions. Signal-Wait methods can be implemented in several ways and may need

hardware support depending on the architecture. For example, architectures which use Out-

of-Order engines will require a memory fence instruction so that memory operations will not

be incorrectly reordered across the wait and force the results of any memory operations to be

visible to the whole system. These strict conditions apply to every memory operation in the

processor, even the ones that are not related or do not need synchronization. Such overhead

can be reduced by certain program transformations, such as loop unrolling, which allows having

a synchronization operation every nth iterations if unrolled n times. Although this increases

performance, it also increases the time delay until the next processor can continue program

execution. Due to this behavior, it becomes difficult to scale, especially for small problem sizes.

Coarse-grain synchronization constructs, like Signal-Wait, cannot be used to take full ad-

vantage of parallelism due to its strict behavior, overhead, the scheduling penalty, and the

control-flow centric approach. Thus, many architectures have implemented fine-grain synchro-

nization constructs in hardware. Some examples include the Denalcor HEP [5], Monsoon [2],

the Tera/Cray MTA family of processors [6], MDP [7], Cedar, Multicube, KSR1, Alewife/Spar-
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cle [8], the M-Machine, the J-Machine, ElDorado (aka Cray XMT) [9] and others. One popular

way to implement the fine-grain constructs is to add an extra bit, called the Full/Empty bit,

to each word in the memory. This enhancement plus the addition of several extensions to

the Instruction Set Architecture to handle the Full/Empty bit allows fast and efficient fine-

grain dataflow like synchronization. Since these bits are in each memory word, a synchronized

operation will only complete if the memory word is in a pre-determined state (for loads the

Full/Empty bit must be “Full and for stores the Full/Empty bit must be Empty). Upon com-

pletion of the operation, the state of the memory cell switches to the contrary state (i.e. a load

will set the locations bit to Empty and store will set it to Full). These types of operations and

the Full/Empty bit mirror the famous M-Structure construct proposed in [10]. The usage of

fine-grain synchronization helps to achieve good performance and scalability as we will show in

this paper.

Another factor that influences synchronization performance is the strictness of the operation.

In general, strictness refers to when a value is evaluated. If the value is evaluated when it is

requested, it is called strict. If the value is evaluated when it is needed then it is called non-

strict. In particular, strict operations stall or block execution until the operation is completed.

Non-strict operations work in an asynchronous fashion and allow execution to continue even

though the operation has not yet been completed. The following two examples clarify the

differences between strict versus non-strict operations. The first example is a strict version of a

synchronizing load (see Figure 1). The load (S1) is issued and its return value is checked to verify

if the load was successful or not. This step is repeated until the load is successful. Successful

in this case means that the synchronizing store has written the value to memory and set the

full bit. The computation and loads (S2, S3, and S4) that follow the synchronizing load (S1)

are issued after the synchronizing load has completed successfully. The second example shows

a non-strict version (see Figure 2). The synchronizing load (S1) is issued and the execution of

independent instructions (S2, S3, and S4) continues until the return value of the synchronizing

load is actually required for the computation at statement S5. The second approach can achieve

better performance since it allows the overlap of execution of independent instructions (S2, S3,

and S4) with the synchronizing load (S1).

S1 : while ( s y n c l o a d s t r i c t (&val , &(a [ i ] ) ) != SUCCESSFUL) ;

S2 : tmp1 = a [ i +1] ;

S3 : tmp2 = a [ i +2] ;

S4 : tmp1 = tmp1 + tmp2 ;

S5 : r e s u l t = tmp1 + val ;

Figure 1: Example of strict synchronization

Even though the addition of the extra bit to each memory word allows the implementation

of fine-grain synchronization constructs, its cost might be very high. The Synchronization State

Buffer from Zhu et al. [11] mitigates this problem with a trade-off. This trade off is based on

the observation that the number of synchronizations at any given time is much smaller than
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S1 : s y n c l o ad n on s t r i c t (&val , &(a [ i ] ) ) ;

S2 : tmp1 = a [ i +1] ;

S3 : tmp2 = a [ i +2] ;

S4 : tmp1 = tmp1 + tmp2 ;

S5 : r e s u l t = tmp1 + val ;

Figure 2: Example of non-strict synchronization

the number of memory locations in the system. Therefore, the use of a small buffer to keep

track of the full/empty bits was proposed. However, this approach lacked the non-strictness of

the I-Structures and other dataflow-type synchronization constructs.

In this paper, we propose an Extended Synchronization State Buffer (E-SSB) that combines

the advantages of a small synchronization buffer with the advantages of non-strict synchroniza-

tion in a many-core architecture. By adding the non-strictness, this structure behaves more

like an I-Structure and it can reap all the benefits of dataflow like synchronization.

For this paper, we use a “real many-core architecture with 160 independent cores to show the

feasibility and effectiveness of non-strict fine-grain synchronization. A more detailed description

of this many-core architecture, named Cyclops-64, is given in Section 3.1.

Since our fine-grain synchronization extension is not available in the real hardware, we used

the hardware description language (HDL) code of the Cyclops-64 architecture and extended it

with E-SSB. This enhanced architecture was then emulated on a gate-level accurate emulation

platform, which was also used during the original chip verification. A more detailed description

of the emulation platform is given in Section 4.1.

Problem Formulation

The problem of the efficient synchronization constructs poses several questions:

• How difficult is it to implement and support non-strict fine-grain synchronization?

• What are the implications on used chip estate?

• What are the performance gains of non-strict fine-grain synchronization?

• How to ensure the correctness of our implementation and the given performance predicting

with a very high degree of confidence?

The remainder of the paper is structured as follows: Section 2 presents a case study using

wavefront computation. Section 3 describes the design and implementation of non-strict fine-

grain synchronization. Section 4 introduces the experimental testbed and shows our results.

Section 5 gives a recap of the related work. Section 6 concludes the paper.
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2 Case Study: Wavefront

In this chapter we take a closer look at a wavefront computation-style program, which is our

motivation for this paper. The C-code of the kernel is shown in Figure 3. First the algorithm

initializes the top row and the first column of a 2D array. Next, the remaining elements of the

2D array are calculated based on the previously determined values from the left, top-left and

top element. This forms a wavefront computation from the top-left corner to the bottom-right

corner as shown in Figure 4.

Due to the dependence of an element on its previously computed neighbors, parallel versions

of the wavefront kernel require synchronization constructs to ensure correctness. However, this

kernel still exhibits enough parallelism to be efficiently executed on a many-core architecture.

A naive approach would be to distribute the rows across the available processors on the chip in

a round-robin fashion and enforce data dependencies via synchronization constructs.

for ( i =0; i<N; ++i ) {

for ( j =0; j<N; ++j ) {

a [ i ] [ j ] = ( a [ i −1] [ j −1] +

a [ i −1] [ j ] +

a [ i ] [ j −1]

) / 3 ;

}

}

1 2 3 4

2 3 4 5

3 4 5 6

4 5 6 7

Figure 3: C code of the wavefront kernel Figure 4: Wavefront Dependencies

We have implemented this case study benchmark for the Cyclops-64 many-core architecture

with the following synchronization constructs: Barrier, Signal-Wait, and I-structure style fine-

grain synchronization. The different implementations are described in the following sections.

2.1 Wavefront with Barriers

A well-known coarse-grain synchronization construct is the barrier. A barrier enforces order on

memory operations and thread execution. Barriers, even if implemented or partially supported

in hardware, can incur substantial overhead, which needs to be considered when parallelizing

an application. One way to reduce the synchronization overhead is to use a blocking approach.

The 2D array is divided into blocks and each row of blocks is processed by one thread. Threads

are statically assigned in a round-robin fashion to rows. The spatial distribution of blocks is

shown in Figure 5 and its schedule with barriers in Figure 6.

By increasing the block size, the overhead of the barrier can be mitigated, but it also re-

duces parallelism. The barrier synchronization is a very coarse-grain synchronization construct

because it synchronizes all threads. The work allocated to each thread is equal (except for
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Figure 5: Partition Figure 6: Schedule

the corner cases), but other unpredictable side-effects, like crossbar congestion, will produce

a variation in execution time for each thread. This means that if any thread falls behind, all

threads must wait for this one thread to complete, even though the wait for certain threads

may be wasteful (i.e. no dependencies with the slowest thread). This unneccessary strict

synchronization takes its toll and the problem further increases with the number of threads.

Even on the Cyclops-64 architecture, which has fast hardware support for barriers, this

parallelization strategy did not scale very well with the number of cores. Furthermore, an

increase in the problem size, which helps to mitigate the overhead of ramping up and down the

wavefront, did not provide significant performance gains. More details can be found in Section

4.4.

2.2 Wavefront with Signal-Wait

Another well known synchronization construct is Signal-Wait. Signal-Wait can be seen as a

fine-grain synchronization construct when compared to barriers. Instead of synchronizing a set

of threads, it allows a finer control akin to point-to-point synchronization methods. In this

parallelization strategy, the producer can signal the consumer when it has finished the write.

The consumer will wait until the signal arrives and then read the data it was waiting for.

Depending on the architecture the Signal and Wait functions have different implementations

and special hardware support might be required. On an out-of-order architecture, a special

operation called a fence instruction is required to make sure that the signal from the producer

is not sent before the write and the read from the consumer is not issued before the wait. The

overhead of Signal-Wait can be reduced by unrolling the loop N times and synchronizing every

N elements, much like a smaller scale of the blocked barrier approach.

Experiments on the Cyclops-64 architecture have shown that this fine-grain parallelization

strategy is more successful than the barrier approach. More details can be found in Section 4.4.
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2.3 Wavefront with I-Structure like Fine-Grain Synchronization

The last synchronization construct we used in this experimental study is an I-structure/dataflow-

like fine-grain synchronization method. In fact, we used three different versions of the fine-grain

synchronization construct, which are described in detail in Section 3. The important difference

between the three versions is that the first two versions are strict/blocking, while the last one is

non-strict/asynchronos. We used the same approach as Signal-Wait, but we replaced the Signal

and Wait functions with I-stucture like synchronizing load and store instructions, which are

supported in hardware. We expected much better results from these synchronization constructs,

because it only synchronized the load and store and not any unrelated memory operations. The

first two synchronization constructs proved to be faster than the barrier approach, but were

unfortunatelly still slower than the Signal-Wait implementation. This was due to the blocking

behaviour of the first two synchronization constructs, which is fatal for in-order-issue processors.

Signal-Wait is blocking on the receiver side, but not on the sender side. The first two fine-grain

synchronization constructs are blocking on both the sender and receiver sides. To solve this

dilemma, we created the third fine-grain synchronization construct, which is non-blocking on

both sides - sender and receiver. With this small change, we achieved astonishing results. The

third implementation beats all other implementations in every case. We received maximum

speedup for any problem size and scaled much better with the number of threads. Even small

problem sizes achieved better speedup with this implementation than with any of the previous

synchronization constructs. More details of the results are presented in Section 4.4.

Problem Formulation

Our case study has shown that non-strict fine-grain synchronization is beneficial for implement-

ing parallel programs on many-core architectures. In the following sections of the paper we will

answer the following questions:

• How difficult is it to implement and support non-strict fine-grain synchronization?

New features in chips can be simulated and tested in a fast and reliable fashion using

functional-accurate simulators, but the real complexity is often misunderstood or just not

implementable. To determine the complexity of fine-grain synchronization, we performed

an implementation at the hardware description level (HDL) of a real many-core architec-

ture. Section 3.3 gives a more detailed description of the changes that were neccessary to

support fine-grain synchronization in the Cyclops-64 many-core architecture.

• What are the implications on used chip estate?

The real hardware cost of a new architectural feature can, to a certain extent, be estimated

by chip architects, but its final resource usage is unkown until an actual implementation

has been performed. In Section 3.4 we discuss and describe both the additional hardware

resources which are required to support fine-grain synchronization, and how we obtained

these results.
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• What are the performance gains of non-strict fine-grain synchronization?

The effort and cost of adding a new architectural feature has to be validated. In the case of

our non-strict fine-grain synchronization construct, we expect a substantial performance

increase. Otherwise, it may be more useful to use chip real estate for other features or even

more cores. In Section 4, we compare and contrast fine-grain synchronization with other

already existing synchronization constructs of the Cyclops-64 many-core architecture.

• How to ensure the correctness of our implementation and the given performance prediction

with a very high degree of confidence?

The validation of new features and their true performance is difficult to measure with

software simulators only. Software simulators may be cycle accurate, but they are incred-

ibly slow and not useful to validate a full chip or even run a benchmark. Others might be

fast, but sacrifice accuracy. In Section 4.1, we describe our emulation system and how we

used it to obtain cycle accurate performance results of the whole chip with a very high

degree of confidence and its usefulness for whole chip and system software validation.

3 Design and Implementation of Non-Strict Fine-Grain Syn-

chronization

Before we go into the details of the design and implementation of non-strict fine-grain synchro-

nization, we will first introduce the Cyclops-64 many-core architecture. Then we will show our

proposed design and its actual implementation for the given many-core architecture.

3.1 The IBM Cyclops-64 Architecture

The IBM Cyclops-64 (C64) architecture is logically partitioned into 80 homogeneous processors

which are connected to a 96-port crossbar. A processor contains two Thread Units (TUs),

which share one Floating-Point Unit (FPU). Therefore, it is possible to have 160 independent

and concurrent threads running at the same time. Every TU is attached to one SRAM bank.

Each TU can access all SRAM banks via the crossbar. The SRAM banks can be configured

during chip boot-up into two distinct sections. One section of the SRAM bank contributes to

the Global Interleaved Shared Memory; the other section can be used as Scratch Pad memory.

A TU has a direct, low-latency access to its own Scratch Pad. The Scratch Pad of other TUs

can still be accessed through the crossbar. Sequential Consistency is guaranteed for the Global

Interleaved Shared Memory, but not for the Scratch Pad. TUs are in-order single-issue and

out-of-order completion cores and have a quad-ported register file (two read and two write

ports) with 64 × 64bit General Purpose Registers (GPRs). All TUs share a common signal

bus, which provides fast barrier support in hardware. Ten TUs (five processors) share one

Instruction-Cache (IC) and four ICs share one crossbar port. There is no Data Cache (DC).

Off-chip DDR2 memory is connected through four on-chip DDR2 memory controllers. Each

memory controller is connected to its own crossbar port. Each chip can be connected to six
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Figure 7: IBM Cyclops-64 (C64) Many-Core Architecture: The architecture consists of 80

processors (Processor 0 -79). Each processor has two Thread Units (TUs) called TU0 and

TU1. Both share one Floating-Point Unit (FPU) and one crossbar port (MPG). Each TU is

connected to a SRAM bank, which can be accessed by all other TUs via the crossbar. Ten TUs

share one Instruction-Cache (IC). The system has four on-chip DDR2 memory controllers to

access off-chip memory. The A-Switch is used to connect to the six surrounding neighbors in a

3D-mesh network.

neighboring chips in a 3-D mesh network. The network switch is also integrated into the

chip and has six connections to the crossbar. The host interface is connected to two crossbar

ports. In summary, the chip’s crossbar interconnect possesses a total of 96 ports: eighty for

the processors, four ports for the I-cache, four ports for on-chip DDR2 memory controllers, six

ports for inter-chip communication, and two ports for the host interface. A logical overview of

the chip is shown in Figure 7.

The architecture uses a explicit memory hierarchy similar to the one found in the NVIDIA

CUDA or the Cell/B.E. architecture. Moreover, there is no paging or virtual memory support

between all the memory hierarchy segments. More information about the C64 architecture and

its system software can be found here [12–14].

3.2 Design of Fine-Grain Synchronization Constructs

In this section we will explain the design principles for non-strict fine-grain synchronization and

its operational semantics. We used the Synchronization State Buffer (SSB) proposed by Zhu et

al. [11] and extended it with non-strict fine-grain synchronization. The major goals in designing

our Extended Synchronization State Buffer (E-SSB) was to improve programability and ease
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of scheduling for the compiler. Our major interest were the single-writer-single-reader (SWSR)

synchronization operations. The original SSB design had two different SWSR modes. Mode 1

employed a busy-wait approach for the reader until the data is ready. The second mode utilized

the sleep-wakeup features of the architecture to reduce crossbar traffic and energy consumption.

We added a third mode which eliminates the overhead of the synchronization operation with

minimal additional hardware cost and added non-strict behaviour. Futhermore we extended all

modes to suport any data size (byte, half word, word and double word) and signedness (signed

and unsigned) of memory operations.

Figure 8 shows the state diagram of the different SWSR modes.

no record SWSR1

swsr1_w / success

swsr1_r / success, value

swsr1_r /

fail

(a) Mode 1: busy-wait

no record

SWSR2

tid = TID

cnt = 1   

swsr2_w / success

SWSR2

cnt = 0

swsr2_r /

success, value

swsr2_r (TID) /

wait

swsr2_w /

tid

(b) Mode 2: sleep-wakeup

no record

SWSR3

tid = TID

cnt = 1   

swsr3_w / 

SWSR3

cnt = 0

swsr3_r / value

swsr3_r (TID) / swsr3_w /

value to tid

(c) Mode 3: non-strict

Figure 8: Single-Writer-Single-Reader (SWSR) State Diagrams

The operational semantics for our non-strict fine-grain synchronization can be found below.

For the the first two modes please refer to the original paper [11].

Mode 3 There are two possible scenarios - the write operation arrives first at the memory

controller and the read operation second, or vice versa. In the first case, when the writer arrives

first, an entry is created in the E-SSB indicating this scenario. No status code is returned to

the writer, as compared to Mode 1 and 2. When the load operation arrives its corresponding

entry in the E-SSB is obtained (if available) and it is allowed to proceed. Finally, the entry

is removed from the E-SSB and the value of the requested memory location is returned to the

reader. In the second case, when the reader arrives first, an entry is created in the E-SSB and

no data is returned. The reader can continue issuing other instructions, which do not depend

on the return value, while waiting for the data to return. When the writer arrives second, the

value is stored in memory and also returned to the reader at the same time. Finally, the entry is

removed from the E-SSB. Under this mode, the synchronization memory operations appear as

normal load and store operations to the processor. The processor only stalls when a dependency

is found between the synchronized operation and another operation. If two synchronized reads

or writes happen to the same memory location, an interrupt is raised in the thread unit, whcih

is responsible for the wrong use of the synchronization construct. Interrupts are also raised for

not matching data sizes.

Using these operational semantics, we implemented the E-SSB in the Cyclops-64 architec-
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ture at the HDL level. The following section gives an overview of the required changes and

implementation decisions.

3.3 Implementation of the Extended Synchronization State Buffer (E-SSB)

In this section we will describe the architectural changes we performed to implement fine-grain

synchronization in the Cyclops-64 many-core architecture. The Extended Synchronization State

Buffer (E-SSB) required changes mostly in the Thread Unit (TU), because all the required logic

related to the on-chip memory interface is located in there. In paticular, changes were requires

on the instruction decoder to support the new E-SSB instructions and the storage interface,

which is responsible for routing memory request from the netwok and the thread unit. Another

module, the crossbar interface, which is shared by two thread units, had to be addapted to

support new crossbar packages. Changes to the crossbar itself where not required.

The changes to the instruction decoder were straight forward. Around 59 new instructions

were added to support the different synchronization features, including instructions for hardware

locks, which are not part of this paper. The Storage Interface (SI) required more extensive

changes, because we added the E-SSB in this module. This was the actual E-SSB buffer and

the assosciated control logic. The data routing inside the storage interface had also to be

adapted to support request from and to the E-SSB logic. In addition, some of the instructions

require more than one result register. Due to restrictions in the instruction format, crossbar

package format, and in the register file, we use the result register and the next following register

as bundled result registers. For example the Single-Writer-Single-Reader instruction swsr1 rd

r6,r8 reads a signed double word value from the address specified in register r8. The return

code is written to register r6 and the value is written to register r7. The write-back register

is selected to be the next register after the return-code register in the register file. The SI in

the TU was adapted to handle this special case and to generate crossbar packages for the new

instructions if necessary. Memory requests for the SRAM originally could originate from the

TU or the network. A simple Least-Recently-Used (LRU) schema is used to arbitrate between

these requests. With the addition of E-SSB, the arbitration schema had to be modified. Since

both TU and network can produce E-SSB requests, a LRU schema is used at the entrance of

E-SSB. We also keep the LRU schema for the normal memory requests to the SRAM, but if

E-SSB has a memory request for the SRAM it takes priority over all other memory requests

for the SRAM. This approach is still fair, because LRU was already performed at the entrance

of E-SSB and due to the serialization effects of the crossbar interconnect.

The E-SSB in this implementation is a 16-entry 8-way associative buffer and 46 bit wide for

each entry. The required fields for a E-SSB entry in this architecture are: State, Cnt, Address,

Processor ID (PID), Thread ID (TID), GPR, Size, and Local. The size of each field is shown

in Table 1.

The E-SSB creates special network return packages to accommodate support for E-SSB

return codes, interrupts and performance counter events. The format of the E-SSB return

packages is shown in Table 2. TrCode specifies the type of package. Int is used to raise a
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Table 1: E-SSB Entry

Field State Cnt Address PID TID GPR Size Local

Size(bit) 4 8 15 7 3 6 2 1

E-SSB interrupt. The interrupt is always risen in the TU that produced it and not in the TU

were the E-SSB is located. This is necessary, because even if a TU is turned off, its SRAM can

still be accessed by other TUs. Sync is used by the performance counter events. It indicates

if a E-SSB load arrived before or after the store. E-SSB Code is sign-extended to 64bit and

written to the register specified in the GPR field. PID and TID are used by the crossbar for

routing. Error has the same behavior as for normal memory operations and raises an External

interrupt. This normally happens when a user level store tries to access protected data or a

load/store access is outside the valid memory space. The content of the Data field is written

to register GPR+1.

Table 2: E-SSB Return Package

Field TrCode Int Sync E-SSB Code PID TID Error GPR Data

Size(bit) 6 1 1 3 7 3 1 6 64

3.4 Logic Resource Usage for Extended Synchronization State Buffer (E-

SSB)

New architectural features may sometimes be implemented very easily, but the associated hard-

ware cost can be overwhelming and not feasible to be implemented in hardware. We did a

comparison of the Cyclops-64 design with and without E-SSB. We converted the HDL code

to VHDL and synthesized it with the design compiler, using the generic technology indepen-

dent libraries (GTECH), to generate a VHDL netlist. Then we used a tool to analyse the

VHDL netlist and calculated the number of each design primitive. The design primitives re-

ported for this study are NOT, AND, OR, XOR, Flip-Flops (FF), and SRAM. An exact gate

number cannot be given, because this depends on the feature size of the process and the spe-

cific component libraries of the semiconductor foundry. The implementation of the first two

Single-Writer-Single-Reader Modes (Mode 1 and 2) required additional buffers in the crossbar

interface, which is solely responsible for an increase of 76,000 FF in the whole system. We

only implemented the first two modes to have a fair comparison for benchmarking. In the final

architecture it would not be necessary to implement all three modes and these additional FF

will not be required. We still list them here for completeness to represent the current design.

4 Evaluation

In this section we first introduce the experimental testbed, which was used to emulate the

Cyclops-64 design. Then we present the results obtained from the experimental testbed, using
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Table 3: Logic resource usage of the Cyclops-64 architecture.

Design Primitive Original with E-SSB Increase

NOT 6,946,100 7,364,740 6.03%

AND 10,924,586 11,779,946 7.83%

OR 5,812,398 6,257,358 7.66%

XOR 1,171,951 1,200,671 2.45%

FF 2,140,299 2,350,619 9.83%

RAM(bit) 50,318,560 51,260,640 1.87%

the case study presented in Section 2.

4.1 Experimental Testbed

For experimental performance evaluation, we implemented the proposed Extended Synchro-

nization State Buffer (E-SSB) at the Hardware Description Language (HDL) of the Cyclops-64

(C64) architecture. Moreover, we use the Delaware End-to-end Emulation Platform (DEEP)

to emulate this many-core architecture. We selected this FPGA based emulator due to several

of its properties. This emulation platform is fast and cycle-accurate if compared with software

based methods. It is capable of emulating the whole many-core design with a relative small

number of FPGAs (32 Altera Stratic II) thanks to the Delaware Iterative Multiprocessor Emu-

lation System (DIMES) mode. Since the whole Cyclops-64 design cannot be fitted into a single

FPGA, neither the ones in DEEP nor any other FPGA on the market today; the design is

broken down into sub-modules. These sub-modules fit on a single FPGA, but many FPGA will

be required to run the entire system and the communication overhead will be very high. On

the other hand, DEEP, running on DIMES mode, takes an iterative emulation approach [15].

Combinatorial logic equivalent sub-modules are implemented on only one (or a few) FPGA(s),

and then they are iteratively utilized to emulate all instances of the sub-module. Moreover,

stateful elements, like Flip-Flops (FF) and internal RAM blocks, are isolated and kept inde-

pendent of the sub-module instance. By using this approach, the required number of FPGAs

to run the design is drastically reduced. All the steps described above are done automatically

by the DEEP software stack. Finally, thanks to its debugging facilities and modes, a design can

be quickly debugged and run. For more information about the DEEP system and its various

modes of operations (including DIMES), please refer to [16]. In the case of the C64 design (with

E-SSB) the average emulation speed is around 20k cycles per second on DEEP.

4.2 Summary of Major Results

From on our experimental results we like to highlight the following key observations:

Observation 1 (See Section 4.3) Non-strict synchronization operations incure no overhead.
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Observation 2 (See Section 4.4) Strong scalability even for small problem sizes.

4.3 Overhead

This benchmark tests the overhead of a successful synchronization, that means that the read

arrives after the write has completed. This benchmark is exactly the same as the one performed

by the original SSB paper [11]. A loop is executed 10,000 times by two threads. One thread

performs a write and then synchronizes on a barrier, the other thread synchronizes on the

barrier first and then performs a load to the same memory location as the store. This reference

time is then compared to a version where the normal load and store operations are replaced

with E-SSB operations. The overhead of the different E-SSB operations is shown in Table 4.

SWSR 1, SWSR 2 and SWSR 3 are the different E-SSB operations which have been introduced

in Section 3.2. From these results we can conclude that our non-strict synchronization operation

incurs negligible overhead. This one cycle overhead comes from the E-SSB buffer, which adds

one extra cycle on every E-SSB memory operation.

E-SSB Operation SWSR 1 SWSR 2 SWSR 3

Overhead E-SSB (cycles) 27 33 1

Table 4: Overhead of successful synchronization

4.4 Scalability

We implemented the wavefront computation kernel in six different version as described in Sec-

tion 2. The different versions are Serial, Barrier, Signal-Wait, SWSR1, SWSR2 and SWSR3.

All kernels were hand-coded in assembly. In all versions, the inner loop is unrolled four times

to reduce the overhead of the synchronization and allows for a better overlapping of memory

and arithmetic computation. We run the benchmark on the emulation system for problem sizes

starting at 16x16 at increments of 16 up to the maximum supported problem size of 512x512

elements. These problem sizes can be emulated on the emulation engine in a reasonable time.

For each problem size we run the wavefront benchmark with different number of threads. Start-

ing from one thread all the way up to 159 threads1 at increments of one. The runtime was

calculated only for the kernel and the speedup was calculated based on the results of the serial

version. Figure 9 shows the speedup of the different parallel versions. The rifts shown in Figure

9(e) is due to congestion on the crossbar ports and memory banks.

Even though not shown in this paper we would like to mention that we also implemented

and run a Successive over-relaxation (SOR) benchmark based on the Jacobi method for solving

linear systems. Compared to the wavefront example the SOR benchmark requires the data of

1The architecture supports up to 160 hardware threads, but only 159 can be used, because the OS kernel is

running on the first thread unit
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(b) Wavefront (Signal-Wait)
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(c) Wavefront (SWSR1)
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(d) Wavefront (SWSR2)
Wavefront (Single-Writer-Single-Reader Mode 3 -- non-strict)

16

64

128

192

256

320

384

448

512

Problem Size

1

159

16

32

48

64

80

96

112

128

144

Number of Threads

0

20

40

60

80

100

S
p
e

e
d

u
p

(e) Wavefront (SWSR3)

Figure 9: Wavefront Speedup
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its four neighbors (north, south, east, and west). The results are comparable with the wavefront

benchmark. We also also implemented a summation tree benchmark to show the advantages of

non-strict synchronization for data dependencies which cannot be statically determined during

compilation time. Due to space limitations, detailed results for both of these benchmarks are

not presented in this paper.

The scalability of the different implementations for small problem sizes is shown in Figure

10. It can be seen that for the given problem sizes SWSR3 scales better with the number of

cores and the maximum speedup is always achieved with SWSR3, too.
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Figure 10: Wavefront Scalability
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5 Related Work

Our research was greatly influenced by previous work on fine-grain synchronization constructs

by academia and industry. This includes research on dataflow constructs like the I-Structure [1],

the Synchronization State Buffer (SSB) [11], and the Terra MTA /Cray XMT [6, 9]. The use

of tagged memory, Full/Empty bits, and I-Structure has been explained in Section 1. E-SSB

differs in the following aspect from previous work. It enables “virtual tagging“ of the whole

memory space like SSB, plus it supports all data sizes of the architecture and it is not limited

to double-word synchronization. Furthermore, it has been enhanced to support non-strict

synchronization. It has the benefits of SSB, that means using less hardware resources, and the

non-strict behaviour of I-Structures. Another approach that gained momentum in recent years

is Transactional Memory (TM) [17, 18], which also employs a non-blocking synchronization

approach. The major difference to our approach is that if a transaction fails, all changes done

inside a transaction must be rolled back and the transaction has to be restarted. This results

in unneccessary computation everytime a transaction has to be restarted.

6 Conclusion and Future Work

In this paper we presented a new design for non-strict fine-grain synchronization, based on

the Synchronization State Buffer (SSB) [11], and its implementation at the Hardware Descrip-

tion Level (HDL) of a “real” many-core architecture. Our experiments were performed on an

emulation engine with gate-level accuracy. The results surpassed our expectations and show

very good scalability for even small problem sizes. Even for larger problem sizes our non-strict

synchronization approach surpasses all other synchronization constructs, like barriers with hard-

ware support and signal-wait. The most noticeable result is that we achieve scalability beyond

the 100 core barrier. E-SSB is the first step towards a new paradigm in code generation for

many-core architectures and we intend to exploit this in future compiler research.
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